Showing posts with label Science. Show all posts
Showing posts with label Science. Show all posts

Wednesday, March 28, 2012

Why Leaves Change Color?

If you are lucky, you live in one of those parts of the world where Nature has one last fling before settling down into winter's sleep. In those lucky places, as days shorten and temperatures become crisp, the quiet green palette of summer foliage is transformed into the vivid autumn palette of reds, oranges, golds, and browns before the leaves fall off the trees. On special years, the colors are truly breathtaking.
How does autumn color happen?
leaf 1 For years, scientists have worked to understand the changes that happen to trees and shrubs in the autumn. Although we don't know all the details, we do know enough to explain the basics and help you to enjoy more fully Nature's multicolored autumn farewell. Three factors influence autumn leaf color-leaf pigments, length of night, and weather, but not quite in the way we think. The timing of color change and leaf fall are primarily regulated by the calendar, that is, the increasing length of night. None of the other environmental influences-temperature, rainfall, food supply, and so on-are as unvarying as the steadily increasing length of night during autumn. As days grow shorter, and nights grow longer and cooler, biochemical processes in the leaf begin to paint the landscape with Nature's autumn palette.
Where do autumn colors come from?
A color palette needs pigments, and there are three types that are involved in autumn color.

sumac leaves
  • Chlorophyll, which gives leaves their basic green color. It is necessary for photosynthesis, the chemical reaction that enables plants to use sunlight to manufacture sugars for their food. Trees in the temperate zones store these sugars for their winter dormant period.
  • Carotenoids, which produce yellow, orange, and brown colors in such things as corn, carrots, and daffodils, as well as rutabagas, buttercups, and bananas.
  • Anthocyanins, which give color to such familiar things as cranberries, red apples, concord grapes, blueberries, cherries, strawberries, and plums. They are water soluble and appear in the watery liquid of leaf cells.
Both chlorophyll and carotenoids are present in the chloroplasts of leaf cells throughout the growing season. Most anthocyanins are produced in the autumn, in response to bright light and excess plant sugars within leaf cells.
During the growing season, chlorophyll is continually being produced and broken down and leaves appear green. As night length increases in the autumn, chlorophyll production slows down and then stops and eventually all the chlorophyll is destroyed. The carotenoids and anthocyanins that are present in the leaf are then unmasked and show their colors.
Certain colors are characteristic of particular species. Oaks turn red, brown, or russet; hickories, golden bronze; aspen and yellow-poplar, golden yellow; dogwood, purplish red; beech, light tan; and sourwood and black tupelo, crimson. Maples differ species by species-red maple turns brilliant scarlet; sugar maple, orange-red; and black maple, glowing yellow. Striped maple becomes almost colorless. Leaves of some species such as the elms simply shrivel up and fall, exhibiting little color other than drab brown.
The timing of the color change also varies by species. Sourwood in southern forests can become vividly colorful in late summer while all other species are still vigorously green. Oaks put on their colors long after other species have already shed their leaves. These differences in timing among species seem to be genetically inherited, for a particular species at the same latitude will show the same coloration in the cool temperatures of high mountain elevations at about the same time as it does in warmer lowlands.
How does weather affect autumn color?
leaf 4 The amount and brilliance of the colors that develop in any particular autumn season are related to weather conditions that occur before and during the time the chlorophyll in the leaves is dwindling. Temperature and moisture are the main influences.
A succession of warm, sunny days and cool, crisp but not freezing nights seems to bring about the most spectacular color displays. During these days, lots of sugars are produced in the leaf but the cool nights and the gradual closing of veins going into the leaf prevent these sugars from moving out. These conditions-lots of sugar and lots of light-spur production of the brilliant anthocyanin pigments, which tint reds, purples, and crimson. Because carotenoids are always present in leaves, the yellow and gold colors remain fairly constant from year to year.
The amount of moisture in the soil also affects autumn colors. Like the weather, soil moisture varies greatly from year to year. The countless combinations of these two highly variable factors assure that no two autumns can be exactly alike. A late spring, or a severe summer drought, can delay the onset of fall color by a few weeks. A warm period during fall will also lower the intensity of autumn colors. A warm wet spring, favorable summer weather, and warm sunny fall days with cool nights should produce the most brilliant autumn colors.
What triggers leaf fall?
In early autumn, in response to the shortening days and declining intensity of sunlight, leaves begin the processes leading up to their fall. The veins that carry fluids into and out of the leaf gradually close off as a layer of cells forms at the base of each leaf. These clogged veins trap sugars in the leaf and promote production of anthocyanins. Once this separation layer is complete and the connecting tissues are sealed off, the leaf is ready to fall.
What does all this do for the tree?
trees Winter is a certainty that all vegetation in the temperate zones must face each year. Perennial plants, including trees, must have some sort of protection to survive freezing temperatures and other harsh wintertime influences. Stems, twigs, and buds are equipped to survive extreme cold so that they can reawaken when spring heralds the start of another growing season. Tender leaf tissues, however, would freeze in winter, so plants must either toughen up and protect their leaves or dispose of them.
The evergreens-pines, spruces, cedars, firs, and so on-are able to survive winter because they have toughened up. Their needle-like or scale-like foliage is covered with a heavy wax coating and the fluid inside their cells contains substances that resist freezing. Thus the foliage of evergreens can safely withstand all but the severest winter conditions, such as those in the Arctic. Evergreen needles survive for some years but eventually fall because of old age.
The leaves of broadleaved plants, on the other hand, are tender and vulnerable to damage. These leaves are typically broad and thin and are not protected by any thick coverings. The fluid in cells of these leaves is usually a thin, watery sap that freezes readily. This means that the cells could not survive winter where temperatures fall below freezing. Tissues unable to overwinter must be sealed off and shed to ensure the plant's continued survival. Thus leaf fall precedes each winter in the temperate zones.

leaf 5 What happens to all those fallen leaves? Needles and leaves that fall are not wasted. They decompose and restock the soil with nutrients and make up part of the spongy humus layer of the forest floor that absorbs and holds rainfall. Fallen leaves also become food for numerous soil organisms vital to the forest ecosystem.
It is quite easy to see the benefit to the tree of its annual leaf fall, but the advantage to the entire forest is more subtle. It could well be that the forest could no more survive without its annual replenishment from leaves than the individual tree could survive without shedding these leaves. The many beautiful interrelationships in the forest community leave us with myriad fascinating puzzles still to solve.
Where can I see autumn color in the United States?
trees You can find autumn color in parks and woodlands, in the cities, countryside, and mountains - anywhere you find deciduous broadleaved trees, the ones that drop their leaves in the autumn. Nature's autumn palette is painted on oaks, maples, beeches, sweetgums, yellow-poplars, dogwoods, hickories, and others. Your own neighborhood may be planted with special trees that were selected for their autumn color.
New England is rightly famous for the spectacular autumn colors painted on the trees of its mountains and countryside, but the Adirondack, Appalachian, Smoky, and Rocky Mountains are also clad with colorful displays. In the East, we can see the reds, oranges, golds, and bronzes of the mixed deciduous woodlands; in the West, we see the bright yellows of aspen stands and larches contrasting with the dark greens of the evergreen conifers.
Many of the Forest Service's 100 plus scenic byways were planned with autumn color in mind. In 31 States you can drive on over 3,000 miles of scenic byways, and almost everyone of them offers a beautiful, colorful drive sometime in the autumn.
When is the best time to see autumn color?
Unfortunately, autumn color is not very predictable, especially in the long term. Half the fun is trying to outguess Nature! But it generally starts in late September in New England and moves southward, reaching the Smoky Mountains by early November. It also appears about this time in the high-elevation mountains of the West.

The Greenhouse Effect

Introduction
The Goldilocks Principle can be summed up neatly as "Venus is too hot, Mars is too cold, and Earth is just right." The fact that Earth has an average surface temperature comfortably between the boiling point and freezing point of water, and thus is suitable for our sort of life, cannot be explained by simply suggesting that our planet orbits at just the right distance from the sun to absorb just the right amount of solar radiation. Our moderate temperatures are also the result of having just the right kind of atmosphere. A Venus-type atmosphere would produce hellish, Venus-like conditions on our planet; a Mars atmosphere would leave us shivering in a Martian-type deep freeze.
Instead, parts of our atmosphere act as an insulating blanket of just the right thickness, trapping sufficient solar energy to keep the global average temperature in a pleasant range. The Martian blanket is too thin, and the Venusian blanket is way too thick! The 'blanket' here is a collection of atmospheric gases called 'greenhouse gases' based on the idea that the gases also 'trap' heat like the glass walls of a greenhouse do.
These gases, mainly water vapor ( ), carbon dioxide (), methane (), and nitrous oxide (), all act as effective global insulators. To understand why, it's important to understand a few basic facts about solar radiation and the structure of atmospheric gases.
Solar Radiation
The sun radiates vast quantities of energy into space, across a wide spectrum of wavelengths.
Most of the radiant energy from the sun is concentrated in the visible and near-visible parts of the spectrum. The narrow band of visible light, between 400 and 700 nm, represents 43% of the total radiant energy emitted. Wavelengths shorter than the visible account for 7 to 8% of the total, but are extremely important because of their high energy per photon. The shorter the wavelength of light, the more energy it contains. Thus, ultraviolet light is very energetic (capable of breaking apart stable biological molecules and causing sunburn and skin cancers). The remaining 49 - 50% of the radiant energy is spread over the wavelengths longer than those of visible light. These lie in the near infrared range from 700 to 1000 nm; the thermal infrared, between 5 and 20 microns; and the far infrared regions. Various components of earth's atmosphere absorb ultraviolet and infrared solar radiation before it penetrates to the surface, but the atmosphere is quite transparent to visible light.
Absorbed by land, oceans, and vegetation at the surface, the visible light is transformed into heat and re-radiates in the form of invisible infrared radiation. If that was all there was to the story, then during the day earth would heat up, but at night, all the accumulated energy would radiate back into space and the planet's surface temperature would fall far below zero very rapidly. The reason this doesn't happen is that earth's atmosphere contains molecules that absorb the heat and re-radiate the heat in all directions. This reduces the heat radiated out to space. Called 'greenhouse gases' because they serve to hold heat in like the glass walls of a greenhouse, these molecules are responsible for the fact that the earth enjoys temperatures suitable for our active and complex biosphere.
Greenhouse Gases
Carbon dioxide () is one of the greenhouse gases. It consists of one carbon atom with an oxygen atom bonded to each side. When its atoms are bonded tightly together, the carbon dioxide molecule can absorb infrared radiation and the molecule starts to vibrate. Eventually, the vibrating molecule will emit the radiation again, and it will likely be absorbed by yet another greenhouse gas molecule. This absorption-emission-absorption cycle serves to keep the heat near the surface, effectively insulating the surface from the cold of space.

Carbon dioxide, water vapor (), methane (), nitorus oxide (), and a few other gases are greenhouse gases. They all are molecules composed of more than two component atoms, bound loosely enough together to be able to vibrate with the absorption of heat. The major components of the atmosphere ( and ) are two-atom molecules too tightly bound together to vibrate and thus they do not absorb heat and contribute to the greenhouse effect.
Greenhouse Effect
Atmospheric scientists first used the term 'greenhouse effect' in the early 1800s. At that time, it was used to describe the naturally occurring functions of trace gases in the atmosphere and did not have any negative connotations. It was not until the mid-1950s that the term greenhouse effect was coupled with concern over climate change. And in recent decades, we often hear about the greenhouse effect in somewhat negative terms. The negative concerns are related to the possible impacts of an enhanced greenhouse effect. This is covered in more detail in the Global Climate Change section of this Web site. It is important to remember that without the greenhouse effect, life on earth as we know it would not be possible.
While the earth's temperature is dependent upon the greenhouse-like action of the atmosphere, the amount of heating and cooling are strongly influenced by several factors just as greenhouses are affected by various factors.
In the atmospheric greenhouse effect, the type of surface that sunlight first encounters is the most important factor. Forests, grasslands, ocean surfaces, ice caps, deserts, and cities all absorb, reflect, and radiate radiation differently. Sunlight falling on a white glacier surface strongly reflects back into space, resulting in minimal heating of the surface and lower atmosphere. Sunlight falling on a dark desert soil is strongly absorbed, on the other hand, and contributes to significant heating of the surface and lower atmosphere. Cloud cover also affects greenhouse warming by both reducing the amount of solar radiation reaching the earth's surface and by reducing the amount of radiation energy emitted into space.
Scientists use the term albedo to define the percentage of solar energy reflected back by a surface. Understanding local, regional, and global albedo effects is critical to predicting global climate change.
Concluding Thoughts
The ability of certain trace gases to be relatively transparent to incoming visible light from the sun, yet opaque to the energy radiated from the earth is one of the best understood processes in the atmospheric sciences. This phenomenon, the greenhouse effect, is what makes the earth habitable for life.

Tuesday, March 27, 2012

'Thermal cloak' hides objects from heat

The range of physical phenomena that scientists are trying to "cloak" objects from has a new entry - heat.
French researchers have shown how to apply the ideas of "optical cloaking" - the endeavour to make a Harry Potter-style cloak - to the thermal world.
The applications for the idea, outlined in Optics Express, stretch beyond hiding from thermal-imaging devices.
It could also be used to direct and move heat around in temperature-sensitive electronics.
There has been a tremendous amount of research into what is called transformation optics since it was first proposed as a means to an invisibility cloak in 2006.
So far, all of the cloaking approaches have limitations that keep them well short of the invisibility promised in fiction. But more recently, similar ideas have been put to use to shield objects from magnetic fields or even from sound or seismic waves.

All of these approaches aim to manipulate the peaks and troughs of waves to achieve their cloaking effects.
But as Sebastien Guenneau of the Institut Fresnel in France explained, the transfer of heat is a subtly different business.
"Heat isn't a wave - it simply diffuses from hot to cold regions," he said.
"The mathematics and physics at play are much different. For instance, a wave can travel long distances with little attenuation, whereas temperature usually diffuses over smaller distances."
The trick was to apply the mathematics of transformation optics to the equations describing diffusion; the result, Dr Guenneau and his colleagues found, was a means to shuttle heat around at will.
The approach is fundamentally different from temperature-changing cloaks that heat and cool actively to mimic objects of different temperatures and have proven to "hide" a tank.
In the new technique, the researchers propose a cloak made of 20 rings of material, each with its own "diffusivity" - the degree to which it can transmit and dissipate heat.
"We can design a cloak so that heat diffuses around an invisibility region, which is then protected from heat," Dr Guenneau explained.
"Or we can force heat to concentrate in a small volume, which will then heat up very rapidly."
It is this ability to direct and concentrate heat that may find first application, for instance in the microelectronics industry, where the heat load in specific areas remains a difficult challenge to engineers.